Adaptive Weight Decay for Deep Neural Networks
نویسندگان
چکیده
منابع مشابه
Adaptive dropout for training deep neural networks
Recently, it was shown that deep neural networks can perform very well if the activities of hidden units are regularized during learning, e.g, by randomly dropping out 50% of their activities. We describe a method called ‘standout’ in which a binary belief network is overlaid on a neural network and is used to regularize of its hidden units by selectively setting activities to zero. This ‘adapt...
متن کاملOn weight initialization in deep neural networks
A proper initialization of the weights in a neural network is critical to its convergence. Current insights into weight initialization come primarily from linear activation functions. In this paper, I develop a theory for weight initializations with non-linear activations. First, I derive a general weight initialization strategy for any neural network using activation functions differentiable a...
متن کاملProjection Based Weight Normalization for Deep Neural Networks
Optimizing deep neural networks (DNNs) often suffers from the ill-conditioned problem. We observe that the scaling-based weight space symmetry property in rectified nonlinear network will cause this negative effect. Therefore, we propose to constrain the incoming weights of each neuron to be unit-norm, which is formulated as an optimization problem over Oblique manifold. A simple yet efficient ...
متن کاملWeight decay induced phase transitions in multilayer neural networks
We investigate layered neural networks with differentiable activation function and student vectors without normalization constraint by means of equilibrium statistical physics. We consider the learning of perfectly realizable rules and find that the length of student vectors becomes infinite, unless a proper weight decay term is added to the energy. Then, the system undergoes a first order phas...
متن کاملAdaptive Normalized Risk-Averting Training for Deep Neural Networks
This paper proposes a set of new error criteria and learning approaches, Adaptive Normalized Risk-Averting Training (ANRAT), to attack the non-convex optimization problem in training deep neural networks (DNNs). Theoretically, we demonstrate its effectiveness on global and local convexity lower-bounded by the standard Lp-norm error. By analyzing the gradient on the convexity index λ, we explain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2937139